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Abstract. In a kicked rotor subjected to a piecewise-continuous force field, it is observed that a stochastic
web and the chaotic diffusion on it suddenly change to transients when an adjustable parameter drives the
dissipation. This phenomenon appears to be a new crisis type, which occurs in systems where conservative
dynamics may be converted to a dissipative one with a contraction rate showing linear time dependence.
It is analytically and numerically shown that, in the crisis, the lifetime dependence obeys universal scaling
law suggested by Grebogy, Ott, and Yorke [Phys. Rev. Lett. 57, 1284 (1986)], and the scaling exponent
takes a special value, 1, due to the dissipation characteristics. Additionally presented is another power
law that describes, from another viewpoint, the transition of a conservative stochastic web (which is a fat
fractal) to a non-attracting thin fractal (the strange repeller).

PACS. 05.45.Ac Low-dimensional chaos

1 Introduction

All the practical systems are dissipative. Selecting evenly
many initial points in phase space, their trajectories
asymptotically tend to one (or several) subset(s), which
is (are) embedded in phase space and addressed “attrac-
tor(s)”. If an invertible mapping describes the system, the
ordinary dissipation expression is that the size of the phase
space region occupied by the moving phase points contin-
uously (usually in average exponentially) decreases. The
area in phase space, occupied by the initial points (which
are attracted by an attractor), is called “basin” of the at-
tractor. If the system is described by a noninvertible map-
ping, two or more points in phase space iterate to a com-
mon image (in certain conditions) that induces a phase
space collapse. The effect may be called noninvertibility-
induced dissipation, which usually is much weaker (the
size of the phase space region occupied by the moving
phase points usually in average decreases linearly) than
the above-mentioned ordinary dissipation and thus often
ignored. This paper will show a situation where this ef-
fect exists alone and therefore cannot be ignored. It is
then easy to image the situation where the effect exists
together with the ordinary dissipation.

In such a conventional dissipative system, when a
chaotic trajectory suddenly escapes through a “leaking
hole” (which suddenly appears at a control parameter’s
threshold value and grows continuously from zero size)
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from a chaotic attractor, so that the attractor suddenly
expands, vanishes, or merges into another one, a “crisis”
occurs [1–3]. In an everywhere smooth dissipative sys-
tem, a crisis often happens when the unstable manifold
(its closure is the chaotic attractor) of an unstable peri-
odic orbit crosses the stable manifold (its closure is the
basin boundary) of itself (or another unstable periodic or-
bit). The small region between the stable manifold and
the unstable manifold forms a leaking hole. Grebogy, Ott,
and Yorke discovered and analytically explained this phe-
nomenon and deduced a famous rule showing the power-
law dependence of the averaged lifetime, 〈τ〉, of the motion
in the original chaotic attractor on the driving parameter,
ε [2]:

〈τ〉 ∼ ε−ν , when ε → 0, (1)

where ν, the scaling exponent, should take a value of 1/2
in an one-dimensional case, or a value between 1/2 and 3/2
in a two-dimensional case, depending on the unstable pe-
riodic orbit’s properties [2]. There are only a few observed
crises, which do not obey scaling law (1). References [3,4]
present two examples. After a crisis, the leaking hole’s
backward image set removes nearly all the original chaotic
attractor’s points. The remnants form a fractal set that is
addressed as a chaotic saddle (in an invertible system)
or a strange repeller (in a noninvertible system) [2,5,6].
Trajectories starting from points of a chaotic saddle or a
strange repeller never leave the saddle or repeller and ex-
hibit chaotic motion forever. However, it is completely un-
likely to hit such a point by random choice since the saddle
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or repeller is a zero measure set and globally unattractive.
What is observable experimentally is not the saddle or re-
peller itself but rather a small neighborhood of it. Trajec-
tories starting close to the saddle or repeller can stay for
a long time in its neighborhood and show chaotic prop-
erties, but sooner or later they escape. Thus the chaotic
saddle or strange repeller leads to transient chaos. In some
systems the chaotic transients may be superlong, and can
be addressed as super-transients [7]. Properties of chaotic
saddles or strange repellers and chaotic transients are im-
portant physical quantities in many practical fields, for
example, in controlling chaos [8] and sustaining chaos [9].

Many practical systems frequently show sudden
changes. They are often described by piecewise continu-
ous dissipative functions. In these systems, other types of
crises may be found, such as a “hole-induced crisis” [4,10]
and a “discontinuity-induced crisis” [11]. In recent years,
some scientists have paid attention to piecewise continu-
ous conservative systems [12–20]. Among them, Hu, Chen,
and their cooperators discussed a system exemplified by
a particle in an infinite potential well subject to a pe-
riodic kicking force [16,17]. What they are interested in
is a kind of two-dimensional map, which is, as shown by
equation (2), a concatenation of two sub-maps, f1 and f2.
Their definition ranges are two subsets, D1 and D2, of
phase space. The smooth borderline between D1 and D2

is called the discontinuity borderline, which is a basic con-
cept in this article
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In the case investigated in references [16,17], the concate-
nation map is invertible as shown by maps (4) and (5) with
β = 1. Hu et al. found, in this system, a type of diffusion
in a stochastic web with special scaling properties [16,17].
It is interesting that the stochastic web is formed by the
discontinuity borderline’s image set [17] (this is explained
in the next section). In references [18,19], the authors
studied an electronic relaxation oscillator model and its
simplified models. All the models are described by discon-
tinuous concatenations of two conservative sub-maps as
shown by equation (2). In certain conditions the discon-
tinuity induces noninvertibility and the aforementioned
noninvertibility-induced dissipation, which cannot be ig-
nored since, in this case, the much stronger ordinary dis-
sipation cannot appear. The systems were addressed as
quasi-dissipative. In such systems the special weak dissipa-
tion should show some influence to the system’s behavior.
Considering the crisis examples observed in conservative
systems [20], it would seem probable to find a crisis with
some unique properties in quasi-dissipative systems. In-
deed, in reference [21] the authors reported such a crisis.
However, they did not discover any unique feature in the
lifetime’s scaling law, which is the most important crisis
property.

Fig. 1. A schematic showing the system’s model.

This article presents a system that is similar to what is
discussed in references [16,17]. However, the current sys-
tem is able to display a continuous transition from a piece-
wise continuous conservative system to a quasi-dissipative
system by adjusting a single parameter. A crisis is ob-
served showing a special value, 1, of the scaling exponent
due to its dissipation characteristics. The article is ar-
ranged as follows: Section 2 introduces the system and
its properties; Section 3 describes the crisis; Section 4 dis-
cusses the strange repeller; Section 5 contains a discussion
and conclusion.

2 The system

A kicked rotor is a famous physical model displaying im-
portant features such as onset of chaos, phase locking, and
so on. It can also be used for introducing standard map-
ping (Chirikov Taylor mapping) [22]. The current study
suggests examining a classical particle moving without
friction along a unit circle subjected to a periodic impul-
sive force (of impulse strength K, as shown in Fig. 1). The
impulse’s periods, Ti (i = 1, 2), are different in the upper
(T1) and lower (T2) semicircles. Along the tangent direc-
tion of the circle, the impulsive forces can be expressed as:{

f1 = K sin(θ − α)δT1 (t),

f2 = K sin(θ + α)δT2 (t),
when

(0 < θ ≤ π),

(π < θ ≤ 2π),
(3)

where θ denotes the angular position, α represents the an-
gle between the direction, at which the impulse is applied,
and the diameter that connects the two positions of the
boundaries, 0 and π, and δTi =

∑∞
n=−∞ δ(t − nTi). After

a subjection of fi impulse the next impulse applies only
after Ti time duration even if the particle crosses the dis-
continuity border. This means that the system has a type
of “memory”, so that the particle may make a free motion
in a time duration longer than T2 in the lower half of the
circle if T2 < T1 and vice versa. For example, if T2 = T1/2,
after last kicking at a position near to the border θ = π in
the upper semicircle, the particle will make a free motion
in a T1 time duration even if it moves, after crossing the
border, in θ ∈ [π, 2π] longer then T2 = T1/2.

By integrating the impulse along the tangent direction
of the circle and the angular momentum of the moving
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particle from just before the nth kick to just before the
(n + 1)th kick, one gets:{

θn+1 = θn + In+1 (mod 2π)

In+1 = In + k sin(θn − α),
if (0 < θn ≤ π),

(4)

{
θn+1 = θn + βIn+1 (mod 2π)

In+1 = In + k sin(θn + α),
if (π < θn ≤ 2π),

(5)
where I = pT1/m, k = KT1/m, p denotes the momen-
tum along the tangent direction of the circle, m denotes
the mass of the particle, and β = T2/T1. When β = 1,
maps (4), (5) become exactly the system presented in ref-
erence [17]. The reference shows this system is piecewise
continuous conservative and invertible [17]. The follow-
ing demonstrates that the mappings become noninvertible
and quasi-dissipative when β �= 1.

It is easily verified that both sub-maps (4) and (5) are
area-preserving, and their inverse maps can be deduced
easily as:{

θn = θn+1 − In+1 (mod 2π)

In = In+1 − k sin(θn − α),
if (0 < θn ≤ π),

(6)

{
θn = θn+1 − βIn+1 (mod 2π)

In = In+1 − k sin(θn + α),
if (π < θn ≤ 2π).

(7)
Please note that in order to find an inverse image, (θn, In),
the principal for selecting (6) or (7) depends on the po-
sition θn instead of θn+1. This creates the possibility of
finding two (θn, In) points for the same (θn+1, In+1) ac-
cording to the different inverse mapping form. This is the
“noninvertibility induced by discontinuity”, which is the
source of quasi-dissipative property.

3 The crisis of a stochastic web

3.1 The stochastic web

Firstly, consider the case when β = 1 and maps (4) and (5)
become invertible and conservative. There are two dis-
continuity borderlines in the system function’s definition
range. The borderlines are denoted by {(θ, I)|θ=0} and
{(θ, I)|θ=π}. In phase space the images of the borderlines
incline, split and bend continuously during an infinite iter-
ation process so that the image set forms a fractal. In the
conservative kicked rotor system (β = 1), the fractal takes
the form of a network as shown in Figure 2. The figure was
obtained by recording the first 2000 iterations from evenly
distributed 101 initial values of {(θ, I)|θ=π,I∈[−0.5,0.5]}.
The reason for confining the initial values to the range,
[−0.5, 0.5], was only for obtaining a suitable figure size.
The parameter values are: α = 0.2, k = 0.4, and β = 1.

Fig. 2. The stochastic web formed by the images of the dis-
continuity borderlines. The details are explained in the text.

The numerical investigation confirms that, in the network,
iterations perform boundless chaotic diffusion. Therefore,
it can be addressed as a stochastic web. It is observable
that there are many (actually an infinite number of) holes
in the network where elliptic islands are located. Regular
motion is restricted in the islands to where chaotic itera-
tions never enter. The backward images of points in the
stochastic web are always in the web, and the backward
images of points in the islands are always in the islands.

Figure 3 shows the first four images of the border-
line {(θ, I)|θ=π} as well as the largest elliptic orbits in
some of the elliptic islands inside the web holes to illus-
trate that the discontinuity borderline’s image set forms
the stochastic web. The black lines (showing the first four
images of the borderline) are drawn by recording the first
(indicated by 1 and the small arrow), second (by 2), third
(by 3), and fourth images (by 4) of the evenly distributed
101 initial values on {(θ, I)|θ=π,I∈[−0.5,0.5]}. The gray dots
(showing the largest elliptic orbits in the elliptic islands)
are drawn by recording 1000 iterations from suitable ini-
tial values, which are selected inside the holes in the cen-
ter part of the network shown in Figure 2. For clarity we
show the first and the fourth images of the borderline in
Figure 3a (by thinner or wider black lines, respectively)
and the second and third in Figure 3b (also by thinner or
wider black lines, respectively). It is obvious that the first
image of the borderline only inclines because the border-
line belongs to the definition range of map (4) and thus
iterates only according to the single nonlinear map func-
tion. The situation becomes different later since the first
image already crosses the borderline so that the different
segments have to iterate according to different mapping
functions, (4) or (5). That is why the second image splits
in two pieces. Both these two lines cross the borderline
therefore the third image splits into four. With similar
reason the fourth image splits into six pieces. From the
first to the fourth, the higher the image is, the more it
bends due to the nonlinear feature of the mapping func-
tions. All segments of the borderline images are tangent
to the elliptic islands. It is easy to realize that the infinite
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(a)

(b)

Fig. 3. The first four images of the borderline
{(θ, I)|θ=π,I∈[−0.5,0.5]} and some elliptic islands inside
the web. The parameter values are: α = 0.2, k = 0.4, and
β = 1. The first and the fourth images are shown in (a) (by
thinner or wider black lines, respectively). The second and
third images are shown in (b) (also by thinner or wider black
lines, respectively).

number of the borderline images mainly form the center
part of the web where many holes appear as shown in Fig-
ure 2. The images of the borderline {(θ, I)|θ=0} are also
tangent to the elliptic islands, but they mainly form the
outside part of the web where no holes appear as shown
in Figure 2.

3.2 The transient stochastic web and the leaking holes

Maps (4) and (5) become noninvertible and quasi-
dissipative when β �= 1. The only case discussed here is
when β ≤ 1. The situation when β ≥ 1 is basically the
same. In this case, a point in the elliptic islands may have
two backward images according to different sub-maps (6)
or (7), respectively. One of them is still inside the islands
and corresponds to conservative motion. Another is out-
side the islands and should be inside the stochastic web
(cf. Fig. 4b). That means there is possibility for the iter-
ations on the web to enter the elliptic islands. Mira has

proven analytically that in some kinds of two-dimensional
piecewise continuous noninvertible maps, like systems (4)
and (5), the chaotic area is bounded by image segments of
the discontinuity borderlines [23]. According to the con-
clusion, the motion on the web should be chaotic, but now
it becomes a transient. Sooner or later, it finally escapes
from the web via a leaking hole and enters to the islands to
perform a conservative regular motion. The leaking hole
should be the set of the points on the elliptic islands, which
have two backward images. One of them is still inside the
islands. Another is inside the stochastic web (cf. Fig. 4b).

The black dots in Figure 4a are drawn by recording
the last 1000 iterations after ignoring the first 199000
from each of the 101 initial values evenly distributed on
{(θ, I)|θ=π,I∈[−0.5,0.5]}. Since no stochastic web is visible,
they show that the elliptic island surfaces represented by
the dots now attract the points. More specifically, the
stochastic web stretches into the islands so that a very
thin “ring” on the surface of each elliptic island, which
is the intersection between the stochastic web and the
island, becomes the leaking hole. The intersection part,
the surface ring, is the set of points on the island, which
have two backward images (one of the images is inside
the transient stochastic web). The parameter values are:
α = 0.2, k = 0.4, and β = 0.98. In order to obtain a
more convictive proof, a ring at the surface of an island
in a period-8 elliptic island chain, which is shown in Fig-
ure 4a by larger black dots and indicated by “A”, is cho-
sen and the following computation has been performed.
Choose 16 evenly distributed “diameters” of the ellipse
and then select evenly 10001 points on each diameter.
Then search if the points have one or two backward im-
ages. The results confirm that all the points, which have
two backward images (one of them is inside the transient
stochastic web), fall in the region inside the surface ring in-
dicated by “A” in Figure 4a. For clarity, Figure 4b shows
the leaking hole (the ring which is shown in Fig. 4a), a
point on it (which is indicated by A), and the two back-
ward images of A, A1 and A2. It is obvious that A1 is
in the transient stochastic web (drawn by recording the
iterations from each of the 400× 400 initial values evenly
distributed on {(θ, I)|θ∈[π−1.0,π+1.0],I∈[−0.5,0.5]}, which do
not enter the leaking holes yet), while A2 falls in another
elliptic island, which belongs to the same period-8 elliptic
island chain. The similar computation is performed with
two different values of β: 0.85 and 0.60 (the results for
β = 0.60 is shown in Fig. 4c). Also, 18 β values have
been chosen evenly in the range β ∈ [0.94, 0.9994]. For
each β value the computation is performed but the num-
ber of the diameters are only 6. All the results convinced
us that the leaking holes always take forms of the surface
rings (both the external and internal borders of the leak-
ing holes are ellipses). Based on this understanding, we
can draw the surface rings (the leaking holes) shown in
Figures 4a, 4b and 4c in a more simple and convenient
way: choose 1001 points evenly on both the axes of the el-
liptic island, where the ring is located. Then, select those,
which have two backward images. Finally, record the first
1000 iterations from each of these selected initial values.
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(a) (b)

(c)

Fig. 4. (a) The leaking holes at the parameter values: α = 0.2, k = 0.4, and β = 0.98. (b) A leaking hole shown in (a), a point
on it, and the two backward images of the point. (c) The leaking holes at the parameter values: α = 0.2, k = 0.4, and β = 0.60.
They are drawn by recording the last 1000 iterations after ignoring the first 199000 from each of the 101 initial values evenly
distributed on {(θ, I)|θ=π,I∈[−0.5,0.5]}. The hole (the ring) indicated by “A” is drawn in a more simple way: choose 1001 points
evenly on both the axes of the elliptic island, where the ring is located. Then, select those, which have two backward images.
Finally, record the first 1000 iterations from each of these selected initial values. The results show the same ring form like others,
which belong to the same elliptic island chain. It is obvious that the rings (the holes) become much wider than those at β = 0.98
although different rings may have different widths. Please note that each of the 21 small “thin” rings shown in this figure is
actually a period-8 island chain. Each of the 8 small spots in it actually is a small ring with similar width.

The numerical investigation also shows the following
conclusions. When ε = β−βc (βc = 1) is small (as the sit-
uation shown in Figs. 4a and 4b), the leaking holes (rings)
are also small (very thin), and there is a super-long tran-
sient chaotic motion before the regular conservative it-
erations. The length of the transients is strongly depen-
dent on the initial values. In this situation the transient
stochastic web almost keeps the same pattern as the orig-
inal (when β = 1), however the iterations on it finally es-
cape to many elliptic islands (as demonstrated by Fig. 4a).
When ε = βc − β becomes increasingly larger, the leaking
holes (rings) become increasingly wider (as the situation
shown in Fig. 4c), and the transient chaotic motion be-
comes increasingly shorter. The transient stochastic web
gradually loses its network form. The illustration of the
transient stochastic web in different β values and the vari-

ation of its fractal dimension may also be interesting, but
the results are presented elsewhere [24].

3.3 Escape from the transient stochastic web
and the rule of the crisis

To signify the gradual escape change from the transient
stochastic web, an average lifetime, 〈τ〉, is defined as:

〈τ〉 = lim
n→∞

∑n
i=1 τi

n
, (8)

where n denotes the number of initial values and τi de-
notes the number of iterations in the transient stochas-
tic web starting from initial value i. Approximate math-
ematical descriptions for the leaking holes (the surface
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rings) around all the larger elliptic islands have been es-
tablished, so the iterations in the transient stochastic web
(before entering the holes) can be quite precisely deter-
mined. The transition from the stochastic web, which ex-
ists in β = 1, to the transient web (when β ≤ 1) can be
addressed as a kind of crisis, and the average lifetime can
be expected to follow the famous power law rule, which
is expressed by (1). Now, following Grebogy, Ott, and
Yorke [2], the special phase space contraction rate’s (in
quasi-dissipative systems) influence on lifetime scaling be-
havior is considered. If the leaking hole takes an area ∆
at a control parameter value ε, it is iterated backwards
in time for n steps and obtains a region with an area ∆′.
In an everywhere smooth and conventionally dissipative
two-dimensional map, discussed in reference [2], the mea-
sure ∆′ depends on an unstable periodic orbit’s proper-
ties. However, in a quasi-dissipative two-dimensional map,
it can simply be predicted that ∆′ = 2m∆, where m ≤ n,
since it is only in some iterations that two phase space
pieces can iterate to one, and the much stronger exponen-
tial contraction (which appears in a conventionally dissi-
pative system) is absent. Assuming that the area of the
leaking hole, ∆, is proportional to control parameter value,
ε, and that the probability, P (∆), with which the itera-
tions visit the hole, obeys a rule P (∆) ∝ ρ∆, where ρ
denotes the visiting probability to a unit area in ∆, for
the iteration process from ∆′ to ∆, one can get:

P (∆)
P (∆′)

=
ρ∆

ρ∆′ =
ε

2mε
=

1
2m

. (9)

So, considering the widely accepted assumption 〈τ〉 ∼
1/P (∆) one gets:

〈τ〉(ε)
〈τ〉(2mε)

=
ε−ν

(2mε)−ν
=

1
(2m)−ν

=
P (∆′)
P (∆)

=
1

(2m)−1
.

(10)
This means that this crisis, with the assumption, has a
special scaling exponent, ν = 1. In the current sample
crisis, numerical results confirm that:

∆ ∝ ε (11)

as shown by Figure 5. Thus the special scaling exponent,
ν = 1, should be measured here.

Figure 6 shows numerical results about the relation-
ship between 〈τ〉 and the driving parameter ε = βc − β
(βc = 1). The solid linear line on the double logarith-
mic ε − 〈τ〉 plane shows the least square fitting of the
data, which crosses 5 magnitude degrees and expresses
good agreement with the power scaling law expressed by
equation (1). The corresponding variation range of pa-
rameter β is 0.968−0.99941. The computation takes much
effort because the areas of many regular quasi-attractors
in each β value must be distinguished. A result with even
higher resolution is very difficult to obtain. The scaling ex-
ponent, ν = 1.01±0.03, agrees very well with the analytic
discussion.

Fig. 5. The numerical results, which show the measure of the
leaking hole, ∆, (the area occupied by it in phase space) is
proportional to the control parameter, ε = βc−β. The variation
range of β is [0.94, 0.9994]. Note that ∆ is dimensionless. The
parameter values are: α = 0.2, k = 0.4.

Fig. 6. The relationship between the average lifetime, 〈τ 〉,
and the controlling parameter. The computation methods are
indicated in the text. The parameter values are: α = 0.2, k =
0.4, and β ∈ [0.968, 0.99941].

4 The strange repellers

4.1 The strange repellers in phase space

As stated in the first section, after this crisis, the set of
the leaking hole’s backward images cuts out nearly all
points in the transient stochastic web. The fractal rem-
nants can be defined as a strange repeller. Figure 7 shows
a strange repeller that was drawn with the parameter val-
ues α = 0.2, k = 0.4, and β = 0.98 (same as Fig. 4) in
the following way: selecting the initial values with iter-
ations that showed a lifetime 10 times longer than 〈τ〉,
and then recording the transience (the iterations before
entering the leaking holes) which started from them but
ignoring the first and last 20%. This method is similar to
the “single trajectory method”, which was suggested by
Tél in 1991 [6]. This simple method works here. Figure 8
shows the computation results for obtaining the repeller’s
fractal dimension by the box-counting method. In the fig-
ure, l denotes the size of the box, the scale. N denotes
the number of data-occupied boxes in the scale. The good
linear fit means that the pattern shown in Figure 7 is a
fractal. The fitting line’s slope is the fractal dimension,
which is 1.889± 0.009.



Y.-M. Jiang et al.: A crisis of a stochastic web 291

Fig. 7. A strange repeller when α = 0.2, k = 0.4, and β = 0.98.

Fig. 8. The computation results for obtaining the fractal di-
mension of the repeller shown in Figure 7 by the box-counting
method. Parameter values are: α = 0.2, k = 0.4, and β = 0.98.

When ε increases so that the leaking hole becomes
larger, the fractal remnants on the transient stochastic
web gradually concentrate to the area near to the regu-
lar quasi-attractors. The next sub-section describes this
phenomenon via the strange repeller’s fractal dimension
variation.

4.2 The strange repeller’s fractal dimension variation

The strange repeller’s gradual change may be expressed by
a figure that draws the relationship between the repeller’s
fractal dimension and the driving parameter, ε. Figure 9
shows the numerical results, which indicate a rule:

D = (0.016 + 0.41ε)−0.168, (12)

where ε = βc − β (βc = 1), and β crosses a wide range,
β ∈ [0.23, 1]. The repeller’s fractal dimension, D, was com-
puted similarly by the box-counting method. When ε → 0,
equation (12) leads to a conclusion that D → 2, which is
the phase space dimension where the repeller is embedded.

Fig. 9. The relationship between the repeller’s fractal dimen-
sion, D, and the controlling parameter. The parameter values
are: α = 0.2, k = 0.4, and β ∈ [0.23, 1].

5 Conclusion and discussion

A new crisis type has been observed in a system where con-
tinuous variation of parameter, β, can adjust the system’s
dissipation characteristics, so the area-preserving chaotic
diffusion on a stochastic web suddenly changes to a tran-
sient. After the crisis, the original conservative system be-
comes quasi-dissipative, in which the phase space contrac-
tion rate is linear instead of exponential (an exponential
contraction rate being common in a conventional dissi-
pative system). In the current system, as quantitatively
supported, the crisis shows a special lifetime scaling ex-
ponent, ν = 1, because the visiting probability to a unit
area in the leaking hole does not depend on the control
parameter, and the leaking hole’s measure is proportional
to the control parameter. This should be the most simple
and typical case in quasi-dissipative systems. More exam-
ples of crises, which show differing scaling exponents in
different quasi-dissipative systems, can be observed. After
the crisis, a strange repeller (a non-attracting fractal set)
can be defined on which iterations make an infinitely long
chaotic motion. The numerical results show that the re-
peller’s fractal dimension variation obeys another power
law when changing the controlling parameter. This power
law leads to an important conclusion that, when the con-
trol parameter, ε, tends to zero (the critical value of the
crisis), the strange repeller’s fractal dimension tends to 2,
which equals the dimension of the original stochastic web
(a fat fractal existing before the crisis). This number also
equals the phase space dimension where the repeller is em-
bedded. Therefore, this rule may describe the crisis even
better by displaying a sudden transition from a conser-
vative fat fractal stochastic web to a non-attracting thin
fractal transient web. Immediately after the crisis, when ε
is very small, the transient web shows a fractal dimension
very near to 2 (the fractal dimension of the original fat
web), and a network form very similar to that of the orig-
inal fat web. As ε increases, the transient web’s fractal
dimension gets continuously smaller and gradually loses
the network form.



292 The European Physical Journal D

This study is supported by the National Natural Science Foun-
dation of China under Grant No. 10275053. The authors would
like to thank Professor Kangjie Shi at Northwest University,
China for the very helpful discussion and suggestions.

References

1. C. Grebogi, E. Ott, J.A. Yorke, Phys. Rev. Lett. 48, 1507
(1982); Physica D 7, 181 (1983)

2. C. Grebogi, E. Ott, J.A. Yorke, Phys. Rev. Lett. 57, 1284
(1986); C. Grebogi, E. Ott, F. Romeiras, J.A. Yorke, Phys.
Rev. A 36, 5365 (1987)

3. C. Grebogi, E. Ott, J.A. Yorke, Phys. Rev. Lett. 50, 935
(1983); Ergod. Theor. Dynam. Sys. 5, 341 (1985)

4. S.-X. Qu, B. Christiansen, D.-R. He, Acta Phys. Sin.
44(6), 841 (1995) (in Chinese)

5. H.E. Nusse, J.A. Yorke, Physica D 36, 137 (1989)
6. T. Tél, in Directions in Chaos, edited by B.-L. Hao, D.-H.

Feng, J.-M. Yuan (World Scientific, Singapore, 1991),
Vol. 3

7. Y.-C. Lai, R.L. Winslow, Phys. Rev. Lett. 74, 5208 (1995)
8. E. Ott, C. Grebogi, J.A. Yorke, Phys. Rev. Lett. 64, 1196

(1990); D. Auerbach, C. Grebogi, E. Ott, J.A. Yorke, Phys.
Rev. Lett. 69, 3479 (1992)

9. Y.-C. Lai, C. Grebogi, Phys. Rev. E 49, 1094 (1994)
10. S.-X. Qu, B. Christiansen, D.-R. He, Phys. Lett. A 201,

413 (1995)

11. X.L. Ding, S.G. Wu, Y.C. Yin, D.R. He, Chin. Phys. Lett.
16, 167 (1999)

12. I. Dana, N.W. Murray, I.C. Percival, Phys. Rev. Lett. 62,
233 (1989)

13. F. Borgonovi, G. Casati, B. Li, Phys. Rev. Lett. 77, 4744
(1996)

14. F. Borgonovi, Phys. Rev. Lett. 80, 4653 (1998)
15. F. Borgonovi, P. Conti, D. Rebuzzi, B. Hu, B. Li, Physica

D 131, 317 (1999)
16. B. Hu, B. Li, J. Liu, Y. Gu, Phys. Rev. Lett. 82, 4224

(1999)
17. H.-S. Chen, Jiao Wang, Y. Gu, Chin. Phys. Lett. 17, 85

(2000)
18. J. Wang, X.-L. Ding, B. Hu, B.-H. Wang, J.-S. Mao, D.-R.

He, Phys. Rev. E 64, 026202 (2001)
19. J. Wang, X.-L. Ding, B.-H. Wang, D.-R. He, Chin. Phys.

Lett. 18, 13 (2001)
20. Y.-C. Lai, C. Grebogi, R. Blumel, I. Kan, Phys. Rev. Lett.

71, 2212 (1993); Y.-C. Lai, C. Grebogi, Phys. Rev. E 49,
3761 (1994)

21. X.-M. Wang, Y.-M. Wang, K. Zhang, W.-X. Wang, H.
Chen, Y.-M. Jiang, Y.-Q. Lu, J.-S. Mao, D.-R. He, Eur.
Phys. J. D 19, 119 (2002)

22. G.M. Zaslavsky, R.Z. Sagdeev, D.A. Usikov, A.A.
Chernikov, Weak Chaos and quasi-regular patterns
(Cambridge Univ. Press, Cambridge, 1991), p. 47

23. C. Mira, Inter. J. Bifur. Chaos 6, 893 (1996)
24. Y. Jiang, Y. Lu, D.-R. He, Acta Phys. Sin. 53(2), 383

(2004) (in Chinese)


